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ABSTRACT: Increased heat-wave frequency across the United States has led to the need for improved predictability of

heat-wave events. A detailed understanding of land–atmosphere interactions and the relationship between soil moisture

and temperature extremes could provide useful information for prediction. This study identifies, for many locations, a

threshold of soil moisture below which there is an increase in the sensitivity of atmospheric temperature to declining soil

moisture. This shift to a hypersensitive regime causes the atmosphere to bemore susceptible to atmospherically driven heat-

wave conditions. The soil moisture breakpoint where the regime shift occurs is estimated using segmented regression

applied to observations and reanalysis data. It is shown that as the soil gets drier, there is a concomitant change in the rate of

decrease in latent heat flux and increase in sensible heat flux leading to a strong positive feedback of increased air tem-

perature near the surface, which further dries out the soil. Central, southwestern, and southeastern parts of theUnited States

seem to have regions of clear regime shifts, while the eastern part of the United States generally does not get dry enough to

reveal significant breakpoints. Sensible heat flux is seen to be a primary driver of this increased temperature sensitivity aided

by the drop in latent heat flux. An investigation of flux tower sites verifies the breakpoint–flux relationships found in

reanalysis data. Accurate estimation of these breakpoints can contribute to improved heat-wave prediction.
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1. Introduction

The frequency and intensity of heat waves have been increas-

ing (Perkins et al. 2012; Sheridan and Lee 2018; Founda et al.

2019; Yu et al. 2020). Over the past 60 years, there has been a

significant rise in contemporaneous heat-wave and drought

events across a majority of the United States (Mazdiyasni and

AghaKouchak 2015). Heat waves have severe ramifications for

ecology, land management, and regional hydrology (Zaitchik

et al. 2006). A continuous increase in the duration, intensity, and

frequency of heat-wave events is anticipated as a response to

anthropogenic climate forcings (Jia et al. 2019). Consequently, it

is important to be able to predict these events in order tomitigate

the harmful impacts on health and sustainability. As the impor-

tance of accurate prediction cannot be understated, it is impera-

tive that the nature of heat waves and the mechanisms that drive

themare fully understood for there to be adequate representation

of the phenomenon in forecast models.

The conventional wisdom regarding heat-wave formation

has been that it is an atmospherically driven phenomenon

(Della-Marta et al. 2007), originating from high-frequency

vertically propagating baroclinic waves that generate high

pressure blocking systems, which in turn thermodynamically

maintain hot dry air at the surface through subsidence (Cassou

et al. 2005). However, studies have shown that land–

atmosphere feedbacks can be important contributing factors to

the magnitude and persistence of heat waves (e.g., Seneviratne

et al. 2006b; Miralles et al. 2019). Dry soil leads to stronger

sensible heat and reduced latent heat flux, which leads to a

deeper boundary layer that enhances the feedback loop and

leads to heat-wave persistence (Dirmeyer et al. 2014). Upwind

drought conditions have also been shown to lead to advection

of sensible heat thereby prompting rises in air temperature

(Schumacher et al. 2019). Land surface moisture deficits and

land–atmosphere (L-A) feedbacks have been connected to the

onset and maintenance of heat waves in many regions (e.g.,

Mueller and Seneviratne 2012; Hirsch et al. 2014; Ford and

Schoof 2017). It has been shown that a reduction in soil

moisture would lead to an increase in 2m air temperature

caused by the redistribution of the surface fluxes by the soil

layer (Liu and Pu 2019). The slow variation of soil moisture is

believed to provide memory and predictability on subseasonal

time scales (Seneviratne et al. 2006a; Dirmeyer et al. 2018).

When considering the role of land–atmosphere feedbacks in

the persistence of heat waves, certain questions arise. Can we

improve upon our current understanding of the relationships

between soil moisture and temperature? How do these rela-

tionships behave over the continental United States?

Hence, this study seeks to provide a detailed analysis of the

characteristics of heat waves over the United States, focusing

specifically on evidence of land–atmosphere interactions in

their persistence and intensification. The role of soil moisture

deficits in enhancing the magnitude and duration of heat waves

via their effect on surface heat and moisture fluxes is of par-

ticular importance in this study. This objective is approached

starting from the accepted notion that drier soil conditions

lead to a higher incidence of heat waves. It is postulated here

that this relationship may not be simply linear, with features

such as changes in temperature sensitivity across the range

of soil moisture that are not captured by simple statistics likeCorresponding author: David O. Benson, dbenson3@gmu.edu
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correlation. Hence, more sophisticated tests that go beyond

simple linear relationships may be able to better capture the

behavior of hot extremes and provide additional information

beyond that from linear relationships already explored (Ford

et al. 2018; Miralles et al. 2012; Cai et al. 2009).

In this paper, the data used for this study and the framework

for analysis are described in section 2. Section 3 details results

from the experiment, bringing to bear in situ measurements

and reanalysis data in the characterization of soil moisture and

temperature relationships. The main findings are discussed in

section 5 and conclusions are drawn in section 6.

2. Data and methods

Ideally, collocated measurements of soil moisture, surface

heat fluxes and 2m temperature spanning many years en-

compassing multiple heat-wave events, periods without ex-

treme heat, and covering a wide range of soil moisture values

would be available in a self-consistent network representing a

large number of locations across the study area: the portion of

North America bounded by 248–508N, 758–1258W; referred to

hereafter as CONUS. In fact, only a few such sites exist in the

region that have adequate, consistent measurements. If we

confine the requirements to just soil moisture and temperature,

nearly a tenfold increase can be had from any single self-

consistent network, but spatial and temporal coverage is in-

evitably uneven and incomplete in all observational networks.

Reanalyses provide complete coverage in space and time

(for many decades), but while temperatures are well con-

strained and validated by observations, other quantities are

not. Surface fluxes in particular are largely a function of the

physical parameterizations of the reanalysis model (Kalnay

et al. 1996) and are not assured to resemble observations.

Because no single dataset provides ideal coverage in terms of

space, time, quality, and coverage of the variables that illumi-

nate the processes linking soil moisture to extremes in 2m air

temperature, we examine a combination of datasets. A sum-

mary of the datasets described below is given in Table 1.

a. In situ measurements

Products from two observational networks are used in this

analysis. The first is the Soil Climate Analysis Network

(SCAN) data product from the National Resources and

Conservation Service (NRCS) and National Water and

Climate Center of the U.S. Department of Agriculture

(USDA; Schaefer et al. 2007). This network is comprised of 221

stations across the United States and is focused mainly in ag-

ricultural areas. Although only soil moisture and temperature

data were used for this analysis, SCAN stations produce au-

tomated records of several other meteorological variables and

soil temperature. However, the sites do not measure surface

sensible and latent heat fluxes. The shallowest soil moisture

measurements, at 5 cm depth generally indicative of soil

moisture between 0 and 7.5 cm, are used for this analysis.

Daily collocated observations of soil moisture, near-surface

meteorology and surface fluxes are obtained from the 2015 flux

network (FLUXNET2015) station dataset (Pastorello et al.

2017). FLUXNET data may be considered the best represen-

tation of ‘‘ground truth’’ for environmental variables linking

the near-surface atmosphere to the land surface (Baldocchi

et al. 2001). There are 28 available FLUXNET2015 tier 1 sites

with soil moisture and surface fluxes across the United States

and southern Canada. The length of available data ranges from

1 to 22 years. To provide continuous observations at the station

sites, FLUXNET2015 has produced gap-filled uninterrupted

time series for meteorological, energy and water budget vari-

ables from the FLUXNET dataset, using continuous globally

available ERA-Interim (ERA-I) data to account for missing

data (Vuichard and Papale 2015). In situ soil moisture (shal-

lowest sensors are typically 5 or 10 cm below the surface de-

pending on the site), 2m air temperature, and latent and

sensible heat flux (eddy covariance measurements) data are

obtained from the sites. A comparable set of variables are also

available from the Atmospheric Radiation Measurement ob-

servatories combining best estimates of soil moisture, near-

surface meteorology, and mainly energy balance Bowen ratio

flux estimates (Xie et al. 2010), but as these measurements are

concentrated in a relatively small fraction of the study area, we

do not use them in this study.

b. Reanalysis data

The ERA5 from the European Centre for Medium-Range

Weather Forecasts (ECMWF) is used in this study. We have

used data covering the 40-yr period 1979–2018. ERA5 data

have a 31 km resolution on a reduced N320 Gaussian grid

(Hersbach et al. 2020), which have been regridded with

nearest-neighbor interpolation to a regular latitude–longitude

grid, effectively repopulating the full Gaussian grid. Daily

fields are used in this analysis, including daily maximum 2m air

temperature, soil moisture (top layer: 0–0.07m), and daily

mean surface fluxes (latent heat, sensible heat, and evaporative

fraction).

c. Methodology

Inconsistencies in the definition or classification of heat

waves, and varying degrees of intensity and duration of events,

TABLE 1. Overview of data products. The SCAN and FLUXNET2015 in situ observations were used to verify the ERA5 data.

Data product Variables Data type Time step

SCAN Soil moisture, 2m air temperature In situ observations (sensors) Daily

FLUXNET2015 Soil moisture, 2m air temperature, latent

heat flux, sensible heat flux

In situ observations (sensors) Daily

ERA5 Soil moisture, 2m air temperature, latent

heat flux, sensible heat flux

Reanalysis Daily
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have hindered an integration of results across studies

(Anderson and Bell 2011). However, for this study, a heat-

wave day will simply be defined as any day when temperature

anomaly exceeds the upper 95th percentile of the local prob-

ability density function based on the 40-yr (1979–2018) cli-

matology (Stéfanon et al. 2012). Duration is not a factor in this

study. This definition provides the opportunity to investigate

the role of L-A interactions in heat-wave exacerbation from a

purely physical standpoint, regardless of the social and human

factors that are oftentimes associated with the definition of

heat waves.

Many studies have investigated the coupling of the land and

atmosphere using linear statistics to quantify the relationship

between soil moisture and temperature (Lakshmi et al. 2003;

Miralles et al. 2012; Stéfanon et al. 2012; Hirsch et al. 2019). As

we will show, in extremely hot and dry conditions, the rela-

tionship of maximum temperature to soil moisture can change,

with maximum temperatures increasing even more rapidly as

soil moisture declines. As such, the relationship appears to shift

from one roughly linear regime to another (i.e., regressions

with differing slopes). An example is shown in Fig. 1. At this

location, an optimal piecewise linear regression, described

below, indicates a sharp transition where the sensitivity of

maximum temperatures to drying soil increases significantly. A

linear fit across all data would miss this transition. Dirmeyer

et al. (2021) have found such transitions to be emerging across

much of Europe. However, it needs to be shown whether this

is a widespread feature in soil moisture–temperature rela-

tionships for CONUS. If it is, then furthermore it must be

determined whether it can generally be well characterized as a

piecewise linear function, and finally whether process linkages

can be determined that indicate a causal connection from soil

moisture to high temperatures that would serve as an aid to

improved predictability of such extreme events.

Koster et al. (2009) addressed the behavior of droughts and

extreme temperature response to soil moisture conditions by

emphasizing two distinct evaporative regimes: moisture-

limited and energy-limited. A region is said to be moisture-

limited when there is an ample amount of net radiative energy

at the surface but a deficit in soil moisture to supply evapora-

tion near the potential rate. This leads to the variations in soil

moisture becoming the regulating component for the varia-

tions in evapotranspiration. On the other hand, when soil

moisture is abundant but there is insufficient net radiation

available for evapotranspiration, the region is energy limited

and evapotranspiration is not controlled by soil moisture

availability (Dirmeyer 2011). If these distinct evaporative re-

gimes are evident between soil moisture and surface fluxes, and

if they also align with the piecewise linear relationship for

temperature transitioning at the same critical soil moisture

value, new insight could be gained.

To determine this threshold for soil moisture, segmented

regression analysis is employed (Muggeo 2008). At each

station/grid cell, a segmented regression with one breakpoint

is generated. This is done in Python using the SciPy method

‘‘optimize.curve_fit’’ and the model function ‘‘piecewise-

linear’’ with reasonable bounds and first-guess values. A

piecewise-linear function is defined with a single intersection

point (having a value for soil moisture and its predictand, e.g.,

temperature) and two slopes, one on either side of the inter-

section; that is, four parameters are predicted. The function

iterates and optimizes the best fit for these parameters based

on minimization of total mean square error across the linear

regressions of both segments and returns the best choices

for values of the breakpoint and the slopes, along with con-

fidence statistics. The soil moisture value at the intersection,

below which the land surface is primed for strong feedback

to atmospherically driven events, is referred to as the

breakpoint.

Results are calculated month by month and monthly statis-

tics are averaged into traditional seasons. To estimate break-

point statistics across multiple years of data, daily values from

the target month of each year are catenated into a single time

series covering all years. This introduces discontinuities where

the data are stitched together, but they do not affect estimates

of the breakpoints as the data are sorted based on soil moisture

values before segmented regression is performed. Where cat-

enation does have an effect is on the estimation of significance.

We calculate the soil moisture time scale t from one-day lag-

ged autocorrelations of the soil moisture time series at each

location (Dirmeyer et al. 2016). Degrees of freedom (DOF) are

estimated by dividing the sample size by (t 1 1). The DOF is

rounded to the nearest integer and used to estimate significance

of fit and error magnitudes for the regressions. Catenation of

monthly time series into multiyear series introduces a small

amount of spurious noise that could lead to an underestimation

of t and an overestimation of DOF, so we choose strict p values

of 0.01 for all significance testing.

Heat-wave days (calculated using the definition of temper-

ature anomalies for the date exceeding the 95th percentile) are

FIG. 1. Scatterplot showing the estimated breakpoint for volu-

metric soil moisture (0.1814m3) as a driver of maximum temper-

ature extremes at 36.11248N, 97.8758W (a location in Oklahoma)

for August 1979–2018 with extreme hot days (warmest 5%) are

shown in red. Obtained using the ERA5 dataset.
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highlighted in red in Fig. 1. It is clear that almost all of those days

occur at very low soil moistures—to the left of the breakpoint.

The statistical model endeavors to find the best piecewise linear

fit to the data without any knowledge of the underlying physics

governing the land–atmosphere interaction, that is, we do not

stipulate limitations such as the valid ranges of the breakpoint or

slopes. As such, they can take various configurations depending

on the data provided. For instance, soil moisture is negatively

correlated with air temperature when L-A feedbacks may be in

force (Liu and Pu 2019), but positive slopes sometimes result

from the regression. Thus, the following screens were enforced

after calculation to ensure that parameters representative of

potential L-A interactions are retained: the slopes on the dry

side of the breakpoint must be negative, the slope to the left of

the breakpoint (drier soils) must be more negative than the one

on the right—to be consistent with the physical understanding of

intensified sensitivity—and there must be more than 10 points

on each side of the breakpoint. The last screen is essential to

ensure that outliers do not determine the sensitivity of the

slopes. Locations passing all screens are candidates for en-

hancement of heat waves from L-A feedbacks.

While a physical connection can be made between extreme

hot days and soil moisture deficit, it is important to note that

other mechanisms like large-scale subsidence and horizontal

advection of heat can also be causes, which may explain those

hot extreme days that fall to the right of the breakpoint in

Fig. 1. The hypothesis is that the likelihood of such hot days

occurring and potentially intensifying is increased when the

soil moisture is extremely low, namely in regions where strong

land–atmosphere coupling is possible. Dry soils lead to a de-

crease in evapotranspiration and concurrently an increase in

sensible heating, which could cause the atmosphere near the

surface to heat up more severely (Seneviratne et al. 2010;

Schumacher et al. 2019). Next, we examine this prospect in the

context of breakpoint analyses.

3. Results

As a starting point, we show the relationship between soil

moisture and maximum 2m air temperature in the basic linear

framework. Pearson product-moment correlation coefficients

calculated month by month using ERA5 data indicate that the

linear relationship between soil moisture and maximum tem-

perature grows strongest in the summer months of June–

August (JJA), shown in Fig. 2. The Great Plains and areas to

the west of it show strong correlations between soil moisture

and temperature. Soil moisture, when correlated with mean

and maximum temperatures, tends to show these relationships

strongly, but correlations using minimum temperature (not

shown) are weaker. This is consistent with previous studies of

soil moisture–air temperature relationships (Alfaro et al.

2006). There is lower correlation in the Northeast United

States. This can be explained by the fact that the northeastern

regions are consistently wetter, and evaporation is typically not

moisture limited. The Pacific coast shows very low correlation

between soil moisture and maximum air temperature. Air

temperatures in this region are largely influenced by Pacific sea

surface temperatures (SSTs) and predominantly onshore flow.

This result has been found in other similar studies (Alfaro et al.

2006; Durre et al. 2000; Huang et al. 1996). This effect is evi-

dent in other coastal regions dominated by onshore sea-breeze

flow during the day, such as along the Gulf Coast and Atlantic

coast, where correlations increase inland from the shore. Soil

moisture is negatively correlated with 2m maximum air tem-

perature but note that Fig. 2 was plotted as the negative of the

correlation.

The results from the example correlation field in Fig. 2

provide no information about variations in sensitivity with

dryness, the severity of extremes, where they occur, or at what

soil moisture values sensitivities increase. While the linear

statistics do a good job of explaining a portion of the rela-

tionship (mean and variance), it is not a complete tool for

understanding the nature of extremes, as pointed out earlier.

Hence, this research posits an approach of separating the soil

moisture–temperature relationship into regimes that brings to

light the nature of extremes and further improves an under-

standing of this relationship that cannot be discerned solely

from statistics as in Fig. 2.

a. Soil moisture relationship with maximum temperature

Observations from the SCAN product were used to inves-

tigate the presence of distinct soil moisture–temperature re-

gimes at many locations across CONUS. Although the SCAN

dataset consists of 221 stations (Fig. 3), the screens mentioned

in section 2, when applied to the dataset, reduce the number of

stations in the sample. The numbers in red at the bottom-right

corner of Figs. 3 and 4 indicate the number of stations that

passed all screens, while the gray crosses (1) represent stations

that were omitted after the screens. Additional screens have

been applied to remove extreme values and breakpoint values

larger than 0.45. This is done to eliminate stations situated over

wetlands (i.e., shallow water table), and irrigated locations.

As a result, there are differences in the total number of stations

in each plot. These station data, though sparse, can provide

some information regarding the relationship between extreme

soil moisture and extreme temperature across CONUS.

In these observations, we see results similar to Fig. 1, where

there are often two clear regimes: a high soil moisture regime

FIG. 2. Seasonal average (JJA) correlation of daily values of soil

moisture and maximum temperature, times 21, for the period

August 1979–2018.
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where there is still typically a negative slope in the regression of

maximum surface temperature against soil moisture, and an

increase in sensitivity when soil moisture values are in extreme

deficit, indicating a hypersensitive regime in which the local

atmosphere is primed to exacerbated heat. Stations in the

western United States (e.g., Arizona) have most values in the

hypersensitive regime due to the limited evapotranspiration

caused by the extreme soil moisture deficits that are typical of

that region. Locations in the desert have soil moisture values

mostly in the dry end of the distribution; it can be assumed

that such regions are already ‘‘activated’’ to enhanced feed-

backs of soil moisture on temperature, conditions necessary

for the exacerbation of heat waves. For stations in the eastern

United States, the relationship fails to find many significant

FIG. 3. Breakpoint statistics at SCAN sites for JJA: (a) breakpoints of soil moisture for maximum 2m temperature; (b) the fraction of

days on the dry side of breakpoint; (c) the slope of the best-fit regression through data on the dry side of the breakpoint; (d) dry side slope

minus wet side slope.

FIG. 4. As in Fig. 3, but for ERA5 grid cells where SCAN sites are located.
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breakpoints, and in other cases, the slope relating maximum

temperature to soil moisture is small in all months, indicative

of a wet region that rarely gets dry enough to cross below the

local breakpoint threshold.

In the SCAN product (Fig. 3), there is seen to be a great deal

of local and regional variability. Points in the western United

States tend to have drier breakpoint values yet are commonly

on the dry side of the breakpoint (Fig. 3b) as are southern

stations, indicating that these regions are more often in the

hypersensitive regime for most of the summer. The locations in

the East are usually on the wet side of the breakpoint, while

those points in the central United States havemore tendency to

shift from one regime to the other depending on the amount of

moisture in the soil. The fraction of days on the dry side of the

breakpoint gives an insight to the frequency of occurrence of

these shifts, or likelihood for the region to be in the hyper-

sensitive regime. Figure 3 reveals that most regions in the

western United States are most often in the hypersensitive

regime during the warm months and as such, are more vul-

nerable to triggering positive land–atmosphere feedbacks on

heat waves. The slope of the best-fit regression of maximum

surface temperature on soil moisture to the dry side of the

breakpoint and the difference in slopes between the linear fits

on the dry versus wet side of the breakpoint (Figs. 3c,d) indi-

cate, respectively, the degree of hypersensitivity of tempera-

tures in dry conditions and the degree of change of sensitivity

when crossing the breakpoint, that is, the distinctness of the

two regimes.

The presence of noise in the observations, for example,

random measurement error, variations caused by local differ-

ences in soils, vegetation, terrain slope, and other physiographic

features, makes it difficult to identify distinct continental-

scale patterns, although it can be argued that western and

southeastern parts of the United States show the strongest

soil moisture–temperature relationships and stronger regime

shifts. From these observations, it is suggested that these regions

are the most susceptible to L-A feedbacks in heat-wave activity

in CONUS.

The ERA5 grid cells at the SCAN sites show more clearly

than the station observations a west-to-east gradient in the

breakpoint values with lower values in the west and higher

values in the east (Fig. 4a). ERA5 also shows a more distinct

zonal gradient in the number of days in each regime (Fig. 4b).

This is consistent with the understanding of L-A coupling

where the western United States is usually moisture limited

and drier than the eastern part of the United States, which is

wetter and more likely energy limited. The dry-side slope

values in the western United States indicate more hypersen-

sitivity than in the East (Fig. 4c). The first-order relationship in

ERA5, however, is very similar to that of the station obser-

vations. In the reanalysis, although the southeastern region

seems to have stations that are generally in the dry regime, they

seem to have high breakpoint values and weaker sensitivity of

maximum temperature to soil moisture variations.

The very high values of breakpoints seen in parts of

CONUS are more likely to be an artifact of the statistical al-

gorithm finding shifts in the data that are unrepresentative

of the underlying physical process in nature. The probability

distribution of soil moisture in wetter areas may not be sam-

pling the true moisture-limited regime nor including the cor-

responding breakpoint. It is also possible that some of the

breakpoints seen in the eastern part of the United States are

indicators of a shift from a barely coupled regime to one that

has become sensitive. Koster et al. (2019) has shown that soil

moisture can still play a role in L-A feedbacks in regions that

are known to be primarily energy limited. This could be an

indicator that soil moisture still has the potential to regulate

the atmosphere above it even in regions that do not often get

extremely dry. Furthermore, it comes as no surprise that more

stations pass the screens in the reanalysis dataset, as reanalysis

data tend to be less noisy.

Continuous maps of these statistics for the CONUS region

from all ERA5 data are shown in Fig. 5. The soil moisture

thresholds are very low (,0.1m3m23) in the Southwest indi-

cating that in those regions, when the topmost layer of soil

moisture is almost depleted, the region is susceptible to heat-

wave events (Fig. 5a). During heat waves, however, it is ex-

pected that the temperatures increase even more rapidly as the

soil gets drier on the dry side of the breakpoint (Ford and

Quiring 2014). The Southeast also appears to have some lower

thresholds as well, especially over Florida, but also some very

high estimated breakpoints across the rest of the region.

Inasmuch as these regions have higher breakpoints than the

western United States, they are generally wetter. Figure 5b

shows that majority of the East is noticeably wetter than the

West and spends more summer days in that wet state.

Considering that these regions are much wetter, a significant

amount of drying must take place for the regime shift to occur.

Breakpoint values in the Northeast may be unreliable as this

region is typically energy limited.

The white portions of Fig. 5 indicate open water or those

regions that do not meet the 95% confidence regarding change

in slope. Regions in the West around 438N appear to be the

most sensitive to the influence of soil desiccation on the at-

mosphere (Fig. 5c), and as a response, make the largest shifts

from the sensitive to hypersensitive regime (Fig. 5d). This

finding reveals these regions as the most susceptible to the

exacerbation of heat-wave activities owing to the influence of

L-A interactions via soil drying.

It is also important to note that some of the finescale spatial

structure seen in Fig. 5 is similar to the structure of soil types

and to a lesser extent vegetation and topography as specified in

ERA5 (not shown). Results not shown indicate significant

correlation (r 5 0.43) between the map of wilting points and

maps of breakpoints across the United States; r 5 0.67 when

total column soil moisture is used to estimate breakpoints.

Hence, the wilting points, which are directly a function of soil

type, are linked to the spatial variation of the breakpoints.

b. Surface flux influence on breakpoint determination

Understanding the role of the surface fluxes in the parti-

tioning of energy is essential to knowledge of the underlying

physical processes behind the transition of regimes.

Breakpoints of sensible and latent heat flux are estimated to

determine which energy flux is the main conduit of hypersen-

sitivity seen in the soil moisture–temperature relationship. The
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FLUXNET stations provide observational information on the

behavior of surface fluxes and the role they play in determining

this relationship between soil moisture and maximum tem-

perature. The FLUXNET data suggest that the breakpoints of

soil moisture for sensible heat flux are typically very close to

those for maximum temperature, while the breakpoints of soil

moisture for latent heat flux tend to be at somewhat higher

values of soil moisture (Fig. 6). However, there is little varia-

tion in latent heat response to soil moisture from month to

month, signaling a consistent local response of latent heat flux

to soil moisture (not shown). The consistency of this pattern

might be an indicator that latent heat plays some role in de-

termining the breakpoints of soil moisture.

To be clear, this does not mean that the role of sensible heat

flux in stimulating the shift in regimes is nonexistent. Figure 6b

shows the breakpoints of soil moisture dependent on sensible

heat flux. Sensible heat flux appears to be an important con-

trolling factor for the shift in regimes as its breakpoints have

the better fit to those of maximum air temperature. As latent

heat shuts down below the breakpoint, more energy goes to the

sensible heat flux, which in turn raises the temperature at the

surface. The transition below the breakpoint can be viewed as a

two-phase process initiated by the shutting down of latent heat

flux, which then enables the sensible heat to dominate the shift

to the hypersensitive regime.

Subsurface soil moisture influences the breakpoints of soil

moisture for latent heat flux, while surface soil moisture is

more important for the determination of breakpoints for sen-

sible heat flux. This occurs because the process of evaporation

involves transpiration by plants, which is strongly connected

to the subsurface soil moisture. The influence of the total

soil column on latent heat flux can be seen in the difference

FIG. 5. Breakpoint statistics fromERA5forJJA: (a)breakpointsof soilmoisture formaximum2mtemperature; (b) the fractionofdayson thedry side

of breakpoint; (c) the slope of the best-fit regression through data on the dry side of the breakpoint; (d) dry side slope minus wet side slope.

FIG. 6. Breakpoint values of soil moisture for maximum temperature vs breakpoints of soil moisture for (a) latent

heat flux and (b) sensible heat flux for JJA at FLUXNET2015 tier 1 stations.
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between the breakpoint values of sensible heat and latent heat.

Results (not shown) show strong correlations between column

soil moisture breakpoints for maximum temperature and col-

umn soil moisture breakpoints for latent heat flux. Similarly,

strong correlations are also seen between surface soil moisture

breakpoints for maximum temperature and surface soil mois-

ture breakpoints for sensible heat flux. However, in regions

with coarse soil types and a low wilting point values, rapid

drainage results in weak vertical gradients of soil moisture. In

such regions, there is negligible difference between the surface

and subsurface soil moisture influence on breakpoint values for

latent heat flux. Further investigation should be carried out to

determine the role of soil types in breakpoint determination.

Other external factors besides the energy fluxesmay also have

effects on the soil moisture response to atmospheric conditions.

The point, however, is to emphasize that the primary driver of

soil moisture sensitivity over CONUS appears to be the sensible

heat flux, attributable to the changes in latent heat flux. This

supports the findings of Koster et al. 2009 regarding the role of

evaporation regimes in soil moisture–atmosphere response.

The roles of latent and sensible heat fluxes are also seen in the

corresponding grid cells in the reanalysis dataset (Fig. 7). This is

generally consistent with Fig. 6, however, the breakpoints of soil

moisture for maximum temperature and latent heat flux tend to

occur at higher soil moisture values in Fig. 7 when compared to

Fig. 6. Even with a very limited number of stations, the ERA5

appears to be consistent with observations as quantified by the p

values. The behavior at the grid cells containing FLUXNET sta-

tions (Fig. 7) is similar to that of the observations but tends to have

lower albeit still significant correlations. However, when we in-

crease the number of sampled grid cells by considering instead

those where the SCAN stations are located, we can see a more

strongly correlated representation of the relationship (Fig. 8). The

same soil moisture relationship to the surface fluxes applies and is

seen more clearly across the larger sample size. The similarities to

the FLUXNET sites, with latent heat flux having higher break-

points, attests to the robustness of these features across very dif-

ferent datasets at the SCAN sites.

c. Comparison of observations versus reanalysis

Figures 6–8 strongly suggest that analysis of the increase in sen-

sitivity of daily maximum temperatures below a breakpoint

threshold of soil moisture, depicted in Fig. 5 for the CONUS area

using ERA5 data, is tied to soil moisture’s control on surface heat

flux partitioning, and is in very good agreement with observational

data where it is available. Agreement with reanalysis data allows us

to widen the scope of this study beyond just specific locations with

soil moisture observations. ERA5’s complete and seamless data

allow for production of maps of heat-wave sensitivity parameters

and makes for easy comparisons with forecast and operational cli-

mate models. To have complete confidence in the ERA5-based

analyses, there remains the need to investigate the robustness of the

reanalysis dataset in capturing the other soil moisture–maximum

temperature parameters.

When ERA5 breakpoint estimates are summarily com-

pared to the two observational data products, the breakpoint

of soil moisture for maximum temperature appears very de-

pendable (Table 2). It is a clear indication that similar rela-

tionships exist in both observations and the reanalysis model.

The comparison of breakpoints of soil moisture for latent

heat flux and sensible heat flux are also significant (not

shown). When comparing the sites in observations to those

from reanalysis, only points that pass all predetermined

screens mentioned earlier, for both the observations and re-

analysis, are included. This is to ensure consistency in the

comparisons but greatly limits the number of sites available

for comparison, with only 8 out of 28 FLUXNET sites in-

cluded, and 79 out of 221 SCAN sites. The limited number of

samples also leads to limited significance, particularly among

the FLUXNET sites, where only the breakpoint statistic has

high significance at 97%–98% confidence. Correspondence of

ERA5 results with the more numerous SCAN stations is

significant with .99% confidence for all metrics except for

the difference in slopes across the breakpoint. This result is

encouraging and enhances the trustworthiness of the ERA5

for this assessment of heat-wave sensitivity. Note that instead

of the slope ratios used throughout this study, the angles

corresponding to the slopes (the arctangents of the slopes

after renormalization based on the range of values on each

axis) at each location are compared to prevent very large

slope magnitudes (angles near 908) from skewing the

correlations.

It is also important to note when making comparisons that there

is a significant scale difference between the observations and

FIG. 7. As in Fig. 6, but for ERA5 grid cells where FLUXNET2015 tier 1 stations are located.
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reanalysis. The station observations represent an area of less than

1km2 for flux tower footprints, much less for the SCAN stations,

while the ERA5 grid cells are nearly 1000km2 in area.Additionally,

the SCAN stations aremainly situated in agricultural areas thatmay

not be representative of the average landscape conditions in the

reanalysis grid cell. FLUXNET stations are also sited to represent a

single land cover class. Finally, the finescale local soil characteristics

affecting the observations often do not match with the parameters

used in the global land surfacemodel of ERA5.Despite thesemany

limitations, we find significant relationships emerge, linking obser-

vational and reanalysis representations of soil moisture controls on

extreme heat.

4. Discussion and conclusions

In an endeavor to characterize the potential role of soil

moisture in heat-wave exacerbation, in situ observations from

221 SCAN stations and 28 FLUXNET sites over CONUS, and

ERA5 data were analyzed to determine breakpoints of soil

moisture below which the atmosphere becomes more suscep-

tible to heat-wave conditions. The breakpoint values are cal-

culated directly from daily soil moisture and maximum

temperature data using a statistical approach without consid-

eration of the underlying physics, and the results are inter-

preted in the context of physical process linkages (Santanello

et al. 2018). Breakpoints function as thresholds that signal a

shift in the sensitivity of daytime maximum temperatures to

declining soil moisture. These breakpoints are seen quite

clearly in observational data, and the ERA5 dataset suitably

represents the values and spatial distribution of the break-

points. We conclude ERA5 captures the spatial patterns and

essential physical processes linking soil moisture and extreme

temperatures.

Breakpoints for soil moisture based on surface heat fluxes

corroborate previous findings (e.g., Hirsch et al. 2014; Ford and

Schoof 2017; Liu and Pu 2019) while expanding our under-

standing of the roles played by coupled L-A processes. Sensible

heat flux is seen to be the primary avenue of this shift in tem-

perature sensitivity, aided by the change in latent heat flux

response to soil moisture, which shuts down as soil moisture is

depleted. This prompts additional net radiative energy at the

surface to go into sensible heat flux, ultimately inducing in-

tensification of high temperatures at the surface.

The western part of the United States appears to be more

likely to find itself in the hypersensitive dry regime.

Meanwhile, large parts of the eastern United States do not

appear to drop below the critical soil moisture value that would

cause a shift into a positive L-A feedback regime during hot

extremes. Although there may be periods of extreme tem-

peratures, they seem less likely to break from the simple linear

relationship between soil moisture and temperature over that

region. This can be explained by the low values for actual

thresholds or breakpoints of soil moisture that are rarely

reached or sustained, corroborated by the unrealistically high

estimated soil moisture breakpoints estimated in the East and

the frequent absence of significant breakpoints. In other words,

it is an indicator that heat-wave events that occur in areas with

high soil moisture values for breakpoints and small changes of

sensitivity slopes on either side of the estimated breakpoint are

largely independent of soil moisture. This is not true for the

southeastern region. While not as dry as the western regions,

southeastern CONUS displays significant regime shifts that

suggest the influence of soil moisture in heat-wave strength.

This could be as a result of atmospherically driven heat-wave

conditions that are then intensified by the positive feedback of

L-A interactions.

FIG. 8. As in Fig. 6, but for ERA5 grid cells where SCAN stations are located.

TABLE 2. The p values of the correlations of ERA5 gridcell data to corresponding FLUXNET and SCAN sites. Values in parentheses are

the number of stations used in each comparison.

Data

Breakpoint of soil moisture for maximum

temperature Fraction of dry days Slope of the dry side Difference in slope

FLUXNET 0.0257 (8) 0.9268 (8) 0.7031 (8) 0.3306 (8)

SCAN 0.0001 (79) 0.0034 (79) 0.0025 (79) 0.2510 (79)
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Figure 9 illustrates schematically the progressive intensi-

fication of L-A coupling and atmospheric sensitivity to the

conditions of soil moisture at the surface. This figure sum-

marizes the mechanistic processes these results suggest are

at play in the determination of breakpoints and shifts in

sensitivity. A region that has sufficient soil moisture sees the

net radiative energy at the surface partitioned between sen-

sible heat flux (H) and latent heat flux (LE), with LE the

preferred sink. At this stage, the atmosphere is typically

considered to be weakly coupled to soil moisture. As desic-

cation of the soil occurs, there is progressively less moisture

available to be evaporated thereby prompting less energy

going into latent heat, and more energy into sensible heat.

This alteration to the partitioning of the surface energy fluxes

generates a gradual shift in atmospheric states, as it is mar-

ginally sensitive to soil moisture variations. This accounts for

the general positive correlation between soil moisture and

temperature but relatively small slopes on the wet side of the

breakpoint depicted in Figs. 1, 3d, 4d, and 5d. Progressive

drying of soil moisture leads to a threshold that, when ex-

ceeded, prompts cessation of latent heat flux and causes

nearly all the surface net radiative energy to be in the form

of sensible heat generating a strong thermal feedback

(Miralles et al. 2014). This threshold has been identified in

this study as the breakpoint. Crossing the breakpoint leads

to a shift in the soil moisture–temperature relationship

from a sensitive regime to a hypersensitive regime. If at-

mospheric conditions suitable for heat-wave occurrence are

met, this state is primed to exacerbate and possibly prolong

the heat-wave activity. The term ‘‘cessation’’ is used cau-

tiously to indicate the physical process that occurs as the

shift is made from the sensitive to the hypersensitive regime.

In reality, this process is more likely to be a gradual tran-

sition between regimes due to the uneven nature of reaching

specific wilting points across the soil column and latent heat

via transpiration across the entire column of soil water, as

discussed earlier.

Referring back to Fig. 1, we reiterate that there is no

reason to expect heat-wave days to correspond only to the

hypersensitive regime. It is acknowledged that there may be

other external processes at play in the feedback. Studies

have established the role of wind speed and relative hu-

midity in the transition of evaporative regimes, and the ef-

fect of an absence of net radiation (Haghighi et al. 2018; Hsu

and Dirmeyer 2021). These and vegetation physiology in

largely vegetated areas, may constitute additional environ-

mental factors that affect the determination of breakpoint

values and ultimately L-A feedback. Furthermore, L-A

feedbacks are not solely a factor in the warmest 1% or 5%

of days but may be a significant contributor to added warmth

on any days lying on the dry side of the local breakpoint of

soil moisture. The fraction of summer days lying within the

hypersensitive regime varies spatially (Fig. 5b), thus so does

the potential of soil moisture conditions to exacerbate

heat waves.

While the breakpoint algorithm has performed satisfacto-

rily, there are some caveats to this study that should be ac-

knowledged. In the humid east, the breakpoints found are

probably not related to severe moisture stress as they tend to

be found at very high values of soil moisture. It is both a

strength and weakness of the algorithm that it is unencum-

bered by physical constraints. There is strength is in the sense

that the results are obtained entirely from the data provided

without any preexisting expectations. To this point, there is a

FIG. 9. The link between hypersensitivity of rising temperatures to decreasing soil moisture and the transition to a

severely water limited regime, shown in a schematic. Increases in sensible heat flux and decreases in latent heat flux

lead to a positive feedback on increasing air temperature at the surface.
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possibility that the algorithm is revealing physical explana-

tions for the high breakpoint values in the humid east that are

outside the scope of this study, such as a transition between

unconstrained evaporation at the potential rate and moder-

ately stressed evaporation somewhat constrained by soil

moisture (i.e., the transition between energy-limited and

water-limited regimes). This point is also a weakness, as a

fully statistical algorithm such as this can generate spurious

results; thus, we apply a posteriori screens informed by

physics. This is where consideration of large data samples,

particularly the spatially complete ERA5 data, is a great help.

Other limitations include the scarcity and noisiness (random

measurement errors) of observational datasets, the scale dif-

ferences between the data products used that hamper some-

what the effective comparison between products, and the

model compromises and parameter choices in ERA5 that can

introduce biases. These limitations hinder greater robustness

of the results.

To reiterate, the results found in this study are noteworthy

because they are based on a piecewise linear statistical analysis

that knows nothing about the physics yet shows physically

meaningful outcomes. This supports the hypothesis that

breakpoints of soil moisture delineating different regimes of

sensitivity of maximum temperatures to soil water content

exist in nature. These breakpoints help present a new per-

spective for improvements in approaches to further heat-wave

predictability and prediction, and climate forecast model

evaluation. These findings could prove to be very beneficial to

the understanding of heat-wave propagation and intensifica-

tion over CONUS, as they provide geographical distributions

of areas where L-A interactions appear to dominate the ex-

acerbation of heat waves, pointing to a need to more carefully

monitor soil moisture in those areas. Additionally, these results

have potential for improving predictability as these are the

regions where antecedent soil moisture could serve as a more

nuanced predictor for heat-wave events.

Finally, as we navigate through a changing climate, this

study provides some insight into the possible future state of

L-A interactions across the United States. Drier conditions

could see the Great Plains and other regions become more

frequently hypersensitive and readily amenable to L-A inter-

actions, that is, the fractions shown in Fig. 5b could grow with

time. Reduced precipitation and progressive drying could see

regions shift regimes from uncoupled to sensitive, and from

sensitive to hypersensitive. This could consequently lead to

more intense and prolonged heat-wave events in those regions.

Increased precipitation and soil moisture can also see regions

shift regimes in the opposite direction.
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